Stereoselective Formation of Three Carbon-Carbon Bonds by Cascade Reaction with Enolate Anion: Synthesis of Tricyclo $\left[6.2 .2 .0^{1,6}\right]$ dodecane and Tricyclo $\left[5.3 .1 .0^{3,8}\right]$ undecane Derivatives

Masataka Ihara, Kei Makita, Yuji Tokunaga, and Keiichiro Fukumoto*
Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77, Japan

Received April 19, 1994^{\otimes}

Abstract

Reaction of 6-[5(E)-6-(methoxycarbonyl)hex-5-enyl]-2-cyclohexen-1-one (1) with LHMDS, followed by one-pot treatment with $\mathrm{CH}_{2} \mathrm{O}$, resulted in a cascade Michael-Michael-aldol reaction, producing hydroxymethylated tricyclo[6.2.2.01,6]dodecane 3. The methylated tricyclo[5.3.1.0 $\left.0^{3,8}\right]$ undecane 21 was obtained by a Michael-Michael-substitution reaction, performed by reaction of 5-[4(E)-5-(methoxycarbonyl)pent-4-enyl]-2-methyl-2-cyclohexen-1-one (11) with LHMDS and one-pot treatment with MeI in the presence of HMPA. Michael-Michael-aldol reactions of 11 were also carried out with LHMDS followed by several aldehydes to provide tricyclo[5.3.1.0 ${ }^{3,8}$] undecane derivatives 22, 23, and 24, respectively. The importance of intramolecular coordination with lithium for the double Michael reaction was supported by an experiment utilizing the corresponding (Z)-isomer 13.

Introduction

It has been demonstrated by us that the intramolecular double Michael reaction ${ }^{1-3}$ and the intramolecular Michael-aldol reaction ${ }^{4}$ are powerful tools for construction of polycyclic ring systems. ${ }^{5}$ These tandem reactions were carried out under four different conditions utilizing base and/or Lewis acid. Among them, the intramolecular double Michael reaction conducted by lithium hexamethyldisilazane (LHMDS) provides a useful methodology for stereoselective assembly of bicyclo[2.2.2]octane systems. ${ }^{1,6}$ It was envisaged that the third carbon-carbon bond formation ${ }^{7}$ would be feasible by one-pot treatment of an enolate anion, obtained by the tandem reaction, with an electrophile. Here we describe novel cascade reactions forming tricyclo[6.2.2.0 ${ }^{1,6}$]dodecane and tricyclo[5.3.1.03,8]undecane systems.

Results and Discussion

When the 6 -substituted 2 -cyclohexen-1-one 1 was treated with LHMDS at $-78^{\circ} \mathrm{C}$ to ambient temperature in a mixture of hexane and ether, the tricyclo[6.2.2.0 $\left.0^{1,6}\right]$ -

[^0]Scheme 1

4
dodecane 2 was obtained in 68% yield as a single stereoisomer. The yield was improved compared with the case of the corresponding ethyl ester (50% yield). ${ }^{6}$ On successive treatment of the product enolate ion with gaseous $\mathrm{CH}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$ in the same reaction vessel, the hydroxymethylated compound 3 was produced in 39% yield as a single isomer. The stereochemistry of $\mathbf{3}$ was tentatively assigned on the basis of an assumption that the electrophile was introduced from the less hindered side. Further reaction of 3 with MsCl in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided the olefin 4 in 80% yield (Scheme 1). Thus, a novel cascade reaction, Michael-Michael-aldol reaction, has been developed. However, treatments of the above enolate with other electrophiles gave no satisfactory result.
The desired cascade reactions forming a variety of third carbon-carbon bonds were effectively performed in the case of the construction of tricyclo[5.3.1.0 ${ }^{3,8}$]undecane systems from the 5 -substituted 2 -cyclohexen-1-one 11 as follows. The synthesis of the substrate 11 is shown in
Scheme 2

$\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$
KHMDS, 18 -crown- 6

Scheme 2. The conjugate addition of the Grignard reagent from 2-(3-bromopropyl)-1,3-dioxane to 5^{8} in the presence of CuI and $\mathrm{Bu}_{3} \mathrm{P}^{9}$ gave 6 in 86% yield. Introduction of the phenylselenyl group under thermodynamically controlled conditions, ${ }^{10}$ followed by oxidative elimination, provided 7 in 23% overall yield (55% yield based on the consumed 6). Since the deprotection of the acetal group of 7 using dilute acid caused an intramolecular aldol reaction, 7 was first reduced with NaBH_{4} in the presence of $\mathrm{CeCl}_{3}{ }^{11}$ to afford 8 in 89% yield. After hydrolysis of the acetal group in 8, reaction of the resulting 9 with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOMe}$ afforded mainly the (E)-unsaturated ester 10 in 56% overall yield (74% yield based on the recovered 8). Oxidation of 10 with DessMartin periodinane (DMPI) ${ }^{12}$ furnished 11 in 85% yield. Furthermore, the (Z)-isomer 12 was prepared in a

[^1]Scheme 3

13
DIBALH

19

20
selective manner in 63% overall yield (73% yield based on the recovered 8) using Still's method. ${ }^{13}$ Oxidation of the product containing 12 as the major component with the periodinane ${ }^{12}$ gave in 69% yield a 2.1:1 mixture of 13 and 11, which were separated by chromatography.

The intramolecular double Michael reaction of the (E) isomer 11 smoothly proceeded at $-78^{\circ} \mathrm{C}$ (Scheme 3). Treatment of 11 with LHMDS for 1 h at $-78^{\circ} \mathrm{C}$ in THF followed by protic quenching produced a $11: 1$ mixture of tricyclo[5.3.1.0 $\left.0^{3,8}\right]$ undecane 14 and its epimer at the C-10 position in 88% yield. The stereochemistry of the major product 14 was determined by the following sequence. After separation from its epimer, 14 was converted into 17 in three steps. Reduction of 14 with DIBALH gave a 6.5:1 mixture of the two epimers of 15 in 87% yield, whose primary hydroxyl groups were protected with the TBDMS group to provide 16 as a mixture of isomers in 54% yield (92% yield based on the consumed 15). Swern oxidation ${ }^{14}$ of 16 gave 17 in 97% yield. A NOE was observed between

[^2]Scheme 4

CH_{2} at the $\mathrm{C}-2$ position and the hydrogen atom at the $\mathrm{C}-10$ position of 17 , but no NOE was detected between CH_{2} at the $\mathrm{C}-2$ position and the methyl group at the $\mathrm{C}-10$ position. The tricyclo[5.3.1.0 $0^{3,8}$]undecane is the key framework of several polycyclic natural products such as patchouli alcohol (19) ${ }^{15}$ and seychellene (20). ${ }^{16}$

It is noteworthy that treatment of the (Z)-isomer 13 with LHMDS produced no double Michael product and only an intractable material was obtained. This result supports the importance of an intramolecular coordination with lithium for the double Michael reaction. Specifically, a favorable intermediate 18 , in which two oxygens are held closely to a lithium ion, ${ }^{17}$ is responsible for the desired cyclization of the (E)-isomer, but such an intermediate is not possible with the (Z)-isomer.

Next, we investigated the cascade reaction of 11. After the intramolecular double Michael reaction of 11, conducted under the same conditions as above, the resulting enolate anion was treated for 3 h in the one-pot procedure with MeI in the presence of hexamethylphosphoric triamide (HMPA) at $-78{ }^{\circ} \mathrm{C}$ to ambient temperature to provide 21 in 71% yield. The methylated compound 21 was not produced without HMPA. Thus, creation of a quaternary carbon center was achieved by a Michael-Michael-substitution reaction (Scheme 4).

When the resulting enolate was reacted with gaseous $\mathrm{CH}_{2} \mathrm{O}$ for 20 min at $-78^{\circ} \mathrm{C}, 22$ was obtained in 83% yield as a single stereoisomer. The one-pot reaction with MeCHO for 3 h at $-78{ }^{\circ} \mathrm{C}$ produced a 1:1.7 epimeric mixture of 23 in 53% yield. Furthermore, a diastereoisomeric mixture of 24 was obtained in 69% yield, in a reaction with PhCHO , although a higher temperature was required in this case. Oxidation of 23 with pyridinium dichromate (PDC) in the presence of $4-\AA$ molecu-

[^3]
Scheme 5

lar sieves gave 25 in 91% yield as a single isomer, while reaction of 24 with the same reagents afforded a 1:2.4 epimeric mixture at the $\mathrm{C}-10$ position of 26 in 95% yield.
The stereostructure of 22 , produced by the selective introduction of hydroxymethyl group from the less hindered side, was determined as follows (Scheme 5). Reduction of 22 with NaBH_{4} formed 27 as a single stereoisomer in 99% yield. Since there was no NOE between the methine hydrogen at the C-9 position and the methyl group at the C-10 position of 27 , it was assumed that the hydride anion selectively attacked from the side adjacent to the hydroxymethyl group. Treatment of 27 with tert-butyldimethylsilyl trifluoromethanesulfonate (TBDMSOTf) in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ formed 28 in 49% yield. Reduction of 28 with DIBALH gave an 87% yield of 29 , whose acetylation provided 30 in 87% yield. The presence of a NOE between the CH_{2} at the $\mathrm{C}-2$ position and the methyl group at the $\mathrm{C}-10$ position supports the stereostructure shown in 30.

Thus, novel cascade Michael-Michael-substitution and Michael-Michael-aldol reactions, which could provide useful methodology for synthesis of polycyclic compounds, have been exploited.

Experimental Section

General Procedures. All reactions were carried out under a positive atmosphere of dry Ar or N_{2}. Solvents were distilled prior to use: THF, $\mathrm{Et}_{2} \mathrm{O}$, benzene, toluene, and hexane were freshly distilled from Na benzophenone; DME, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and MeCN were distilled from CaH_{2} and kept over $4-\AA$ molecular sieves. Unless otherwise noted, all extracts were dried over MgSO_{4}, and the solvent was removed by rotary evaporation in vacuo. Silica gel column chromatography was carried out with Merck Kieselgel 60 Art. 7734, while Merck Kieselgel 60 Art. 9835 was used for flash chromatography. HPLC was carried out using a Gilson HPLC system (Model 302/303), monitored by using UV and refractive index detectors.

6-[5(E)-6-(Methoxycarbonyl)hex-5-enyl]-2-cyclohexen-1-one (1). To a solution of 6-(5-hydroxypentyl)-2-cyclohexen1 -one ${ }^{6}(850 \mathrm{mg}, 4.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added $4-\AA$ molecular sieves (3.0 g) and PDC ($2.0 \mathrm{~g}, 5.3 \mathrm{mmol}$), and the mixture was stirred for 3 h at ambient temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, followed by filtration through Florisil, the
filtrate was evaporated to give the crude aldehyde, which was used in the following reaction without purification.

A mixture of the crude product and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$ (1.9 $\mathrm{g}, 5.6 \mathrm{mmol})$ in $\mathrm{MeCN}(15 \mathrm{~mL})$ was stirred for 8 h at ambient temperature and then heated 1 h at reflux. Evaporation of the solvent afforded a residue, which was subjected to chromatography on silica gel. Elution with AcOEt/hexane ($3: 17$ v / v) provided 1 ($532 \mathrm{mg}, 48 \%$ for two steps) as a colorless oil: IR (neat) $v 1720,1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.02-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{dt}, 1 \mathrm{H}, J=9.9,2.0 \mathrm{~Hz}), 5.82(\mathrm{dt}, 1 \mathrm{H}$, $J=15.8,1.5 \mathrm{~Hz}$), $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.17$ (m, 3H), 2.15-2.04 (m, 1H), 1.92-1.70 (m, 2H), 1.54-1.30 (m, $5 \mathrm{H})$; MS $m / z 236\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} 236.1412$ (M^{+}), found 236.1402.
($1 R^{*}, 6 S^{*}, 7 S^{*}, 8 R^{*}$)-7-(Methoxycarbonyl)tricyclo[6.2.2.0 ${ }^{1,6}$]-dodecan-10-one (2). To a stirred solution of lithium hexamethyldisilazane (LHMDS) in dry hexane (6 mL), which was prepared from $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}{ }_{2} \mathrm{NH}(0.07 \mathrm{~mL}, 0.33 \mathrm{mmol})\right.$ and 1.56 M BuLi/hexane ($0.18 \mathrm{~mL}, 0.28 \mathrm{mmol}$), was slowly added at -78 ${ }^{\circ} \mathrm{C}$ a solution of $1(56.1 \mathrm{mg}, 0.24 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$, and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. The reaction temperature was gradually raised to $20^{\circ} \mathrm{C}$ during 3 h and the mixture was further stirred for 10 min at $20^{\circ} \mathrm{C}$. After being cooled to $-78^{\circ} \mathrm{C}$, the mixture was poured onto saturated NH_{4} Cl under cooling with ice. The resulting mixture was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with brine, dried, and evaporated to give a residue, which was chromatographed on silica gel with AcOEt/hexane ($1: 4 \mathrm{v} / \mathrm{v}$) as eluent to afford $2(38.2 \mathrm{mg}, 68 \%)$ as a colorless oil: IR (neat) $v 1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.49-$ $2.40(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.03-1.06(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $236\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} 236.1412\left(\mathrm{M}^{+}\right)$, found 236.1406.
(1R*, 6S*, $\mathrm{SS}^{*}, 8 R^{*}, 9 R^{*}$)-9-(Hydroxymethyl)-7(methoxycarbonyl)tricyclo[6.2.2.0 ${ }^{1,6}$]dodecan-10-one (3). To a stirred solution of LHMDS in $\mathrm{Et}_{2} \mathrm{O}$ hexane ($1: 12 \mathrm{v} / \mathrm{v}, 13$ $\mathrm{mL})$, prepared from $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NH}(0.12 \mathrm{~mL}, 0.57 \mathrm{mmol})$ and 1.56 M BuLi/hexane ($0.29 \mathrm{~mL}, 0.45 \mathrm{mmol}$), was slowly added at $-78{ }^{\circ} \mathrm{C}$ a solution of $1(89.0 \mathrm{mg}, 0.38 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(1$ mL). After being stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$, the reaction temperature was gradually raised to $20^{\circ} \mathrm{C}$ during 3 h and the mixture was further stirred for 10 min at $20^{\circ} \mathrm{C}$. After being cooled to $-78^{\circ} \mathrm{C}$, an excess of gaseous $\mathrm{CH}_{2} \mathrm{O}$, generated by heating paraformaldehyde at $170{ }^{\circ} \mathrm{C}$, was introduced to the reaction mixture. After being stirred for 20 min at $-78^{\circ} \mathrm{C}$, $\mathrm{Et}_{2} \mathrm{O}$ was added and the mixture was washed with brine, dried, and concentrated. Chromatography of the residue on silica gel with AcOEt/hexane ($3: 7 \mathrm{v} / \mathrm{v}$) as eluent produced 3 (39.4 $\mathrm{mg}, 39 \%$) as a colorless oil: IR (neat) $v 3450,1725,1710 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.94$ (ddd, $1 \mathrm{H}, J=11.0,8.0,2.5$ Hz dd, $J=11.0,8.0 \mathrm{~Hz}$ with $\mathrm{D}_{2} \mathrm{O}$), 3.71 ($\mathrm{s}, 3 \mathrm{H}$), 3.64 (ddd, $1 \mathrm{H}, J=11.0,9.8,6.1 \mathrm{~Hz}$; dd, $J=11.0,6.1$ with $\mathrm{D}_{2} \mathrm{O}$), 2.83 (dd, $1 \mathrm{H}, J=9.8,2.5 \mathrm{~Hz}$, disappeared with $\mathrm{D}_{2} \mathrm{O}$), 2.61 (dd, 1 H , $J=8.0,6.1 \mathrm{~Hz}$), $2.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.27$ (ddd, $1 \mathrm{H}, J=14.0,11.6$, $6.1 \mathrm{~Hz}), 2.22(\mathrm{dd}, 1 \mathrm{H}, J=7.6,1.5 \mathrm{~Hz}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H})$, $1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 3 \mathrm{H})$, $1.57-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.10(\mathrm{~m}, 4 \mathrm{H}) ;$ MS $m / z 266\left(\mathrm{M}^{+}\right)$. Anal. Caled for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}: \mathrm{C}, 67.65 ; \mathrm{H}, 8.33$. Found: C, 67.43; H.8.20.
(1R*, 6S*, 7S*, 8R*)-7-(Methoxycarbonyl)-9methylenetricyclo[6.2.2.0 ${ }^{1,6}$]dodecan-10-one (4). To a solution of $3(8.2 \mathrm{mg}, 0.03 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added at $0^{\circ} \mathrm{C} 1,8$-diabicyclo[5.4.0]undec-7-ene (DBU) (0.02 mL , $0.13 \mathrm{mmol})$ and $\mathrm{MsCl}(0.007 \mathrm{~mL}, 0.09 \mathrm{mmol})$, and the mixture was stirred for 1 h at ambient temperature. After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the mixture was washed with brine, dried, and evaporated to give a residue, which was purified by silica gel column chromatography. Elution with AcOEt/hexane (1:9 v/v) gave $4(5.1 \mathrm{mg}, 80 \%$) as a colorless oil: IR (neat) $v 1730,1705$, $1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.60(\mathrm{~d}, 1 \mathrm{H}, J=1.5$ Hz), $5.19(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}$), $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 1 \mathrm{H})$, $2.34-2.21$ (m, 2H), 2.05-1.96 (m, 1H), 1.93-1.11 (m, 11H); MS $m / z 248\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} 248.1412$ (M^{+}), found 248.1400 .

5-[3-(1,3-Dioxacyclohexyl)propyl]-2-methylcyclohexan-1-one (6). To a stirred mixture of Mg ($729 \mathrm{mg}, 30 \mathrm{mmol}$),
which was activated by stirring with a catalytic amount of I_{2} prior to use, in dry THF (5 mL) was added a solution of 2-(3-bromopropyl)-1,3-dioxane ($4.18 \mathrm{~g}, 20 \mathrm{mmol}$) in dry THF (5 mL), and the mixture was heated for 4 h under reflux in order to prepare the Grignard reagent. To a mixture of $\mathrm{CuI}(2.29 \mathrm{~g}$, $12 \mathrm{mmol})$ in dry THF (10 mL) was added at $0{ }^{\circ} \mathrm{C} \mathrm{Bu}{ }_{3} \mathrm{P}(2.99$ $\mathrm{mL}, 12 \mathrm{mmol}$). After being stirred for 2 h at ambient temperature, to the stirred mixture was slowly added at -78 ${ }^{\circ} \mathrm{C}$ the above Grignard reagent. After being stirred for 40 min at $-78^{\circ} \mathrm{C}$, a solution of 2 -methyl-5-cyclohexen-1-one $5(1.1 \mathrm{~g}$, 10 mmol) in dry THF (5 mL) was slowly added at $-78^{\circ} \mathrm{C}$ to the mixture. After being stirred for 2 h at $-78^{\circ} \mathrm{C}$, saturated NaHCO_{3} was added at $-78^{\circ} \mathrm{C}$, and the mixture was treated at ambient temperature with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The resulting mixture was filtered through Celite and the aqueous layer was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extract was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried, and evaporated. Chromatography of the product on silica gel with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 93 \mathrm{v} / \mathrm{v})$ provided $6(2.07 \mathrm{~g}, 86 \%)$ as a pale yellow oil: IR (neat) $v 1706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.50(\mathrm{dt}, 1 \mathrm{H}, J=4.9,1.9 \mathrm{~Hz}), 4.12-4.07(\mathrm{~m}, 2 \mathrm{H})$, $3.79-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.30$ and $2.24-$ 2.19 [each m, 1H (1.3:1)], 2.12-1.54 (m, 8H), 1.45-1.15 (m, 6 H), 1.06 (d, $1.3 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 1.01 (d, $1.7 \mathrm{H}, J=6.1 \mathrm{~Hz}$); MS $m / z 240\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} 240.1725\left(\mathrm{M}^{+}\right)$, found 240.1756.

5-[3-(1,3-Dioxacyclohexyl)propyl]-2-methyl-2-cyclohex-en-1-one (7). To a stirred solution of 6 ($980 \mathrm{mg}, 4.0 \mathrm{mmol}$) in dry AcOEt (20 mL) was slowly added at ambient temperature a solution of $\mathrm{PhSeCl}(860 \mathrm{mg}, 4.5 \mathrm{mmol}$) in dry AcOEt (5 mL), and the mixture was stirred for 7 h at the same temperature. After addition of saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, the mixture was thoroughly extracted with AcOEt. The extract was washed with saturated NaHCO_{3} and brine and dried. Evaporation of the solvent afforded the crude phenyl selenide, which was used in the next reaction without purification.

To a stirred mixture of the above product and saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ in AcOEt (30 mL) was added in small portions at $10^{\circ} \mathrm{C} m$-CPBA ($840 \mathrm{mg}, 4.8 \mathrm{mmol}$) during 20 min . After being stirred for 45 min at ambient temperature, the mixture was thoroughly extracted with AcOEt. The extract was washed with brine, dried, and evaporated to give a residue, which was purified by chromatography on silica gel. Elution with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 9 \mathrm{v} / \mathrm{v})$ provided 7 ($223 \mathrm{mg}, 23 \%$; 55% yield based on the recovered 6) as a colorless oil: IR (neat) $v 1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.72-6.68(\mathrm{~m}, 1 \mathrm{H})$, $4.50(\mathrm{t}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 4.09(\mathrm{dd}, 2 \mathrm{H}, J=13.4,4.6 \mathrm{~Hz}), 3.75$ (dt, $2 \mathrm{H}, J=12.2,2.0 \mathrm{~Hz}$), $2.53(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}$), $2.45-$ $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{~d}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz})$, $1.60-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.26(\mathrm{~m}, 5 \mathrm{H})$; MS $m / z 238\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} 238.1568$ (M^{+}), found 238.1574. Further elution gave 6 ($571 \mathrm{mg}, 58 \%$).

5-[3-(1,3-Dioxacylohexyl)propyl]-2-methyl-2-cyclohexen. 1-ol (8). To a stirred mixture of $7(1.27 \mathrm{~g}, 5.3 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(2.19 \mathrm{~g}, 5.9 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added in small portions at $0^{\circ} \mathrm{C} \mathrm{NaBH}_{4}(101 \mathrm{mg}, 2.7 \mathrm{mmol})$, and the mixture was stirred for 15 min at ambient temperature. After evaporation of the solvent, the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried, and evaporated. The residue was subjected to chromatography on silica gel with AcOEt/hexane ($3: 7 \mathrm{v} / \mathrm{v}$) as eluent to give 8 ($919 \mathrm{mg}, 89 \%$) as a colorless oil: IR (neat) $v 3400$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.45(\mathrm{dd}, 1 \mathrm{H}, J=5.6,1.8$ Hz), $4.51(\mathrm{t}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 4.18-4.08(\mathrm{~m}, 3 \mathrm{H}), 3.76(\mathrm{dt}, 2 \mathrm{H}$, $J=12.4,2.2 \mathrm{~Hz}$), 2.15-1.94 (m, 2H), 1.80-1.12 (m, 15H); MS $m / z 240\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}: \mathrm{C}, 69.96 ; \mathrm{H}, 10.07$. Found: C, 69.71; H, 9.85 .

5-[4(E)-5-(Methoxycarbonyl)pent-4-enyl]-2-methyl-2-cyclohexen-1-ol (10). A mixture of 8 ($919 \mathrm{mg}, 3.8 \mathrm{mmol}$) in $10 \% \mathrm{HClO}_{4}$ THF ($1: 1 \mathrm{v} / \mathrm{v}, 15 \mathrm{~mL}$) was stirred for 12 h at 30 ${ }^{\circ} \mathrm{C}$. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the extract was washed with saturated NaHCO_{3} and brine, dried, and evaporated to give the crude aldehyde 9 , which was used in the following reaction without purification.
A mixture of the product 9 and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(1.28 \mathrm{~g}$, 3.8 mmol) in dry $\mathrm{MeCN}(30 \mathrm{~mL})$ was stirred for 12 h at room
temperature. After evaporation, the residue was purified by silica gel column chromatography with AcOEt/hexane ($1: 4 \mathrm{v} / \mathrm{v}$) as eluent to give 10 ($512 \mathrm{mg}, 56 \%$ for two steps; 74% yield based on the recovered 8) as a colorless oil: IR (neat) $v 3400$, $1720,1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.96(\mathrm{dt}, 1 \mathrm{H}, J$ $=15.4,7.0 \mathrm{~Hz}), 5.82(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 5.57-5.41(\mathrm{~m}, 1 \mathrm{H})$, 4.15 and 3.97 [each br s, 1H (1.3:1)], 2.23-1.94 (m, 4H), 1.78 and 1.75 [each s, 3H (1:1.3)], 1.92-1.10 (m, 11H); MS m/z 238 $\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} 238.1568$, found 238.1585 Further elution afforded 8 ($217.4 \mathrm{mg}, 24 \%$).

5-[4(E)-5-(Methoxycarbonyl)pent-4-enyl]-2-methyl-2-cyclohexen-1-one (11). To a stirred mixture of Dess-Martin periodinane (DMPI) ${ }^{12}$ ($4.1 \mathrm{~g}, 9.7 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was slowly added at ambient temperature a solution of 10 (914 $\mathrm{mg}, 3.8 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and the mixture was stirred for 90 min at the same temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, the resulting mixture was poured onto saturated $\mathrm{NaHCO}_{3} / 0.1 \mathrm{~N}$ aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 7 \mathrm{v} / \mathrm{v}, 8 \mathrm{~mL})$. After being stirred for 30 min at ambient temperature, the mixture was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with saturated NaHCO_{3} and brine, dried, and evaporated. Chromatography of the residue on silica gel with AcOEt/hexane ($3: 17 \mathrm{v} / \mathrm{v}$) provided $11(774 \mathrm{~g}, 85 \%$) as a colorless oil: IR (neat) $\nu 1730,1675, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.94(\mathrm{dt}, 1 \mathrm{H}, J=15.8,7.0 \mathrm{~Hz}), 6.75-6.68(\mathrm{~m}, 1 \mathrm{H}), 5.83(\mathrm{dt}$, $1 \mathrm{H}, J=15.8,1.2 \mathrm{~Hz}$), $3.73(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.26-$ $1.96(\mathrm{~m}, 5 \mathrm{H}), 1.77(\mathrm{~d}, 3 \mathrm{H}, J=1.1 \mathrm{~Hz}), 1.58-1.25(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{MS}$ $m / z 236\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} ; \mathrm{C}, 71.16 ; \mathrm{H}, 8.53$. Found: C, 70.94; H, 8.57.

5-[4(Z and E)-5-(Methoxycarbonyl)pent-4-enyl]-2-meth-yl-2-cyclohexen-1-ols (12 and 10). To a stirred solution of 18 -crown-6 ($825 \mathrm{mg}, 3.1 \mathrm{mmol}$) and $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2}-$ $\mathrm{Me}^{13}(0.44 \mathrm{~mL}, 2.1 \mathrm{mmol})$ in dry THF (10 mL) was added at $-78{ }^{\circ} \mathrm{C} 0.5 \mathrm{M}$ KHMDS/toluene ($2.0 \mathrm{~mL}, 1.0 \mathrm{mmol}$), and the mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$. To the mixture was added at $-78^{\circ} \mathrm{C}$ a solution of the crude 9 , prepared as above from 8 ($250 \mathrm{mg}, 1.0 \mathrm{mmol}$), in dry THF (4 mL). After being stirred for $2 \mathrm{~h} \mathrm{at}-78^{\circ} \mathrm{C}$, followed by dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with brine, dried, and evaporated. The residue was chromatographed on silica gel with AcOEt/ hexane ($1: 4 \mathrm{v} / \mathrm{v}$) to give a $2.1: 1$ mixture of 12 and 10 (155.0 $\mathrm{mg}, 63 \%$ for two steps: 73% yield based on the recovered 8) as a colorless oil: IR (neat) $3450,1720,1670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.96(\mathrm{dt}, 0.32 \mathrm{H}, J=15.4,7.0 \mathrm{~Hz}), 6.20$ (dt, $0.68 \mathrm{H}, J=11.4,7.3 \mathrm{~Hz}), 5.85-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.43(\mathrm{~m}$, $1 \mathrm{H}), 4.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.73$ and 3.71 [each s, $3 \mathrm{H}(1: 2.1)$], $2.70-$ $2.50(\mathrm{~m}, 2 \mathrm{H}), 2.25-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.72-1.10$ (m, 7 H); MS $m / z 238\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} ; 238.1569$ (M^{+}), found 238.1573 . Further elution afforded $\mathbf{8}(50 \mathrm{mg}, 20 \%)$.

5-[4(Z)-5-(Methoxycarbonyl)pent-4-enyl]-2-methyl-2-cyclohexen-1-one (13). According to the similar procedure for the preparation of $\mathbf{1 1}$, the above mixture of 12 and 10 (50.0 $\mathrm{mg}, 0.2 \mathrm{mmol}$) was converted into a $2.1: 1$ mixture of 13 and $11(34.4 \mathrm{mg}, 69 \%)$, which was subjected to chromatography on silica gel with AcOEt/hexane ($3: 17 \mathrm{v} / \mathrm{v}$) to afford 13 as a colorless oil: IR (neat) $1720,1670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.73-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{dt}, 1 \mathrm{H}, J=11.4,7.3 \mathrm{~Hz})$, $5.79(\mathrm{dt}, 1 \mathrm{H}, J=11.4,1.5 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.35(\mathrm{~m}$, $4 \mathrm{H}), 2.55-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.78(\mathrm{~d}, 3 \mathrm{H}, J=1.1 \mathrm{~Hz}), 1.57-1.36$ (m, 4 H); MS $m / z 236$ (M ${ }^{+}$); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} 236.1412$ (M^{+}), found 236.1415 .
($1 R^{*}, 2 S^{*}, 3 S^{*}, 7 S^{*}, 8 R^{*}, 10 S^{*}$)-2-(Methoxycarbonyl)-10methyltricyclo[5.3.1.0 ${ }^{3,8}$] undecan-9-one (14). To a stirred solution of LHMDS in THF (3 mL), prepared from $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{NH}$ $(0.08 \mathrm{~mL}, 0.38 \mathrm{mmol})$ and 1.56 M BuLi/hexane ($0.23 \mathrm{~mL}, 0.36$ mmol) was slowly added at $-78^{\circ} \mathrm{C}$ a solution of $11(42.3 \mathrm{mg}$, $0.18 \mathrm{mmol})$ in dry THF (1 mL), and the mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. After addition of 10% aqueous KHSO_{4} at $-78^{\circ} \mathrm{C}$, the resulting mixture was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried, and evaporated to give a residue, which was subjected to chromatography on silica gel. Elution with AcOEt/hexane ($1: 4 \mathrm{v} / \mathrm{v}$) provided a 11:1 mixture of 14 and its diastereoisomer ($37.2 \mathrm{mg}, 88 \%$). HPLC separation of the mixture using $4 \times 250 \mathrm{~mm}$ column of Dynamax Microsorb silica ($5 \mu \mathrm{~m}$) with AcOEt/hexane ($3: 17 \mathrm{v} / \mathrm{v}$; $1 \mathrm{~mL} \mathrm{~min}^{-1}$) as eluent provided 14 as a colorless oil: IR (neat)
$\nu 1726,1714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.69(\mathrm{~s}, 3 \mathrm{H})$, 2.79 (br s, 1H), 2.67 (t, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}$), 2.44 (dd, $1 \mathrm{H}, J=6.4$, 2.4 Hz), 2.18-2.12 (m, 1H), 2.12-2.06 (m, 2H), 1.86 (ddd, 1 H , $J=14.1,11.6,3.2 \mathrm{~Hz}), 1.66-1.40(\mathrm{~m}, 7 \mathrm{H}), 0.99(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.7 \mathrm{~Hz}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 236\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} ; \mathrm{C}, 71.16$; H, 8.53. Found: C, 70.84; H, 8.41.
(1R*,2S*, 3S $\left.{ }^{*}, \mathbf{7 S}{ }^{*}, 8 R^{*}, 10 S^{*}\right)$-2-(Hydroxymethyl)-10methyltricyclo[5.3.1.0 ${ }^{3,8}$] undecan-9-ol (15). To a stirred solution of 14 ($33.3 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dry DME (3 mL) was slowly added at $-78^{\circ} \mathrm{C} 0.93 \mathrm{M}$ DIBALH/hexane ($0.76 \mathrm{~mL}, 0.70$ mmol), and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, followed by addition of $\mathrm{H}_{2} \mathrm{O}(0.76 \mathrm{~mL})$, the mixture was stirred for 30 min at ambient temperature and then filtered through Celite. Evaporation of the filtrate gave a residue, which was chromatographed on silica gel with AcOEt/hexane ($2: 3 \mathrm{v} / \mathrm{v}$) to provide a $6.5: 1$ mixture of 15 (25.9 $\mathrm{mg}, 87 \%$) as a colorless oil: IR (neat) $3400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.94(\mathrm{dd}, 1 \mathrm{H}, J=8.7,4.5 \mathrm{~Hz}$), $3.80-3.62(\mathrm{~m}$, $2 \mathrm{H}), 3.61-3.35(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.20(\mathrm{~m}, 15 \mathrm{H}), 1.15$ and 1.10 [each d, $3 \mathrm{H}(1: 6.5)$, each $J=9.2 \mathrm{~Hz}$]; MS $m / z 192\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O} 192.1513\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$, found 192.1522 .
($\left.1 R^{*}, 2 S^{*}, 3 S^{*}, 7 S^{*}, 8 R^{*}, 10 S^{*}\right)-2-[($ tert -Butyldimethyl-siloxy)methyl]-10-methyltricyclo[5.3.1.0 ${ }^{3,8}$]undecan-9one (17). A mixture of $15(18.4 \mathrm{mg}, 0.09 \mathrm{mmol})$, TBDMSCl ($17.2 \mathrm{mg}, 0.11 \mathrm{mmol}$), DMAP ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.02 \mathrm{~mL}, 0.14 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$) was stirred for 12 h at ambient temperature. Evaporation of the mixture gave a residue, which was chromatographed on silica gel with AcOEt/hexane ($3: 17 \mathrm{v} / \mathrm{v}$) to provide the diastereoisomeric mixture of 16 ($15.2 \mathrm{mg}, 54 \% ; 92 \%$ yield based on the recovered 15) as a colorless oil: IR (neat) $v 3430 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.87(\mathrm{dd}, 1 \mathrm{H}, J=8.9,4.0 \mathrm{~Hz}), 3.66(\mathrm{dd}, 1 \mathrm{H}, J$ $=9.8,6.5 \mathrm{~Hz}), 3.62(\mathrm{dd}, 1 \mathrm{H}, J=9.8,6.0 \mathrm{~Hz}), 2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.88-1.16(\mathrm{~m}, 13 \mathrm{H}), 1.07$ and 1.00 (each d, 3 H ($6.5: 1$), each $J=7.5 \mathrm{~Hz}], 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$. Further elution afforded 15 ($7.7 \mathrm{mg}, 42 \%$).
To a stirred solution of $(\mathbf{C O C l})_{2}(0.02 \mathrm{~mL}, 0.23 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was slowly added at $-78^{\circ} \mathrm{C}$ DMSO (0.02 mL , $0.34 \mathrm{mmol}){ }^{14}$ After 10 min of stirring, a solution of 16 (15.0 $\mathrm{mg}, 0.05 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was slowly added at $-78^{\circ} \mathrm{C}$ to the mixture. After 1.5 h of stirring at $-78{ }^{\circ} \mathrm{C}$, followed by addition of $E t_{3} \mathrm{~N}(0.06 \mathrm{~mL}, 0.46 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$, the reaction temperature was raised to ambient temperature. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and then washed with brine. The organic solution was dried and evaporated to afford a residue, which was purified by silica gel chromatography. Elution with AcOEt/hexane ($1: 20 \mathrm{v} / \mathrm{v}$) gave 17 ($14.4 \mathrm{mg}, 97 \%$) as a colorless oil: IR (neat) $\nu 1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.49-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{q}, 1 \mathrm{H}$, $J=7.3 \mathrm{~Hz}$) $2.00(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}$), 1.88 (ddd, $1 \mathrm{H}, J=25.1$, $11.5,2.9 \mathrm{~Hz}$), 1.81-1.67 (m, 2H), 1.65-1.35 (m, 7 H), 1.17 (d), $3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / z 322\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si} 322.2328$, found 322.2305 .
($1 R^{*}, \mathbf{2 S}{ }^{*}, \mathbf{3 S}^{*}, 7 S^{*}, 8 R^{*}$)-2-(Methoxycarbonyl)-10,10-dimethyltricyclo[5.3.1.0 ${ }^{3,8}$] undecan-9-one (21). After treatment of 11 ($12.0 \mathrm{mg}, 0.051 \mathrm{mmol}$) with LHMDS, prepared from $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NH}(0.02 \mathrm{~mL}, 0.09 \mathrm{mmol})$ and $1.56 \mathrm{M} \mathrm{BuLi} /$ hexane $(0.04 \mathrm{~mL}, 0.06 \mathrm{mmol})$, as in the case of the preparation of 14 , MeI ($0.03 \mathrm{~mL}, 0.5 \mathrm{mmol}$) and HMPA ($0.02 \mathrm{~mL}, 0.11 \mathrm{mmol}$) were added to the reaction mixture at $-78^{\circ} \mathrm{C}$. The reaction temperature was gradually raised to ambient temperature during 3 h and the mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$. The mixture was washed with brine, dried, and evaporated to give a residue, which was chromatographed on silica gel. Elution with AcOEt/hexane ($1: 4 \mathrm{v} / \mathrm{v}$) provided $21(9.0 \mathrm{mg}, 71 \%$) as a colorless oil: IR (neat) $v 1720,1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.21-$ $2.09(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{t}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 1.72-1.14(\mathrm{~m}, 7 \mathrm{H}), 1.10$ ($\mathrm{s}, 3 \mathrm{H}$), 0.93 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.6,175.4$, $51.9,45.5,44.1,41.8,29.5,29.1,29.0,28.3,27.4,24.4,24.3$, 23.5, 23.4; MS m/z $250\left(\mathbf{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ $250.1569\left(\mathrm{M}^{+}\right)$, found 250.1555 .
($1 R^{*}, \mathbf{2 S}{ }^{*}, 3 S^{*}, \mathbf{7 S}^{*}, 8 R^{*}, 10 R^{*}$)-10-(Hydroxymethyl)-2-(methoxycarbonyl)-10-methyltricyclo[5.3.1.0 ${ }^{3,8}$]undecan9 -one (22). After treatment of $11(12.3 \mathrm{mg}, 0.052 \mathrm{mmol})$ with LHMDS, prepared from ($\left.\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NH}(0.03 \mathrm{~mL}, 0.14 \mathrm{mmol})$ and
$1.56 \mathrm{M} \mathrm{BuLi} /$ hexane ($0.07 \mathrm{~mL}, 0.11 \mathrm{mmol}$), as the above, an excess of gaseous $\mathrm{CH}_{2} \mathrm{O}$ was introduced during 20 min into the stirred mixture at $-78^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was worked up and purified as above to give 22 (11.5 $\mathrm{mg}, 83 \%$) as a colorless oil: IR (neat) $v 3450,1720,1710 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.71$ (s, 3H), 3.50 (d, $1 \mathrm{H}, \mathcal{J}=8.4$ $\mathrm{Hz}), 3.46(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 2.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.64-2.58(\mathrm{~m}$, 1 H), 2.49 (dd, $1 \mathrm{H}, J=6.2,2.2 \mathrm{~Hz}$), $2.25-2.07$ (m, 4 H), 1.78$1.22(\mathrm{~m}, 7 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$; MS m/z $266\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} 266.1517$ (M^{+}), found 266.1505.
($1 R^{*}, 2 S^{*}, 3 S^{*}, 7 S^{*}, 8 R^{*}, 10 R^{*}$)-10-(1-Hydroxyethyl)-2-(meth-oxycarbonyl)-10-methyltricyclo[5.3.1. $\left.0^{3,8}\right]$ undecan-9one (23). After treatment of $11(11.0 \mathrm{mg}, 0.047 \mathrm{mmol})$ with LHMDS, prepared from $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{NH}_{2}(0.03 \mathrm{~mL}, 0.14 \mathrm{mmol})\right.$ and $1.56 \mathrm{M} \mathrm{BuLi} /$ hexane ($0.04 \mathrm{~mL}, 0.06 \mathrm{mmol}$), as above, MeCHO ($0.03 \mathrm{~mL}, 0.54 \mathrm{mmol}$) was added to the mixture. After being stirred for 3 h at $-78^{\circ} \mathrm{C}$, the mixture was worked up and the product was purified by chromatography on silica gel with AcOEt/hexane ($3: 7 \mathrm{v} / \mathrm{v}$) as eluent to afford a 1:1.72 epimeric mixture of 23 ($6.9 \mathrm{mg}, 53 \%$) as a colorless oil: IR (neat) $v 3480$, $1725,1690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.01-3.92$ (m, $1 \mathrm{H}), 3.75$ and 3.72 [each $\mathrm{s}, 3 \mathrm{H}(1: 1.7)$], $2.90-2.80(\mathrm{~m}, 1 \mathrm{H})$, $2.64-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.24-1.95(\mathrm{~m}, 3 \mathrm{H})$, $1.89-1.15(\mathrm{~m}, 8 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=5.9 \mathrm{~Hz}), 0.93(\mathrm{~s}, 3 \mathrm{H})$; MS $\mathrm{m} / \mathrm{z} 280\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} 280.1673\left(\mathrm{M}^{+}\right)$, found 280.1666.
($1 R^{*}, 2 S^{*}, 3 S^{*}, 7 S^{*}, 8 R^{*}$)-10-(α-Hydroxybenzyl)-2-(meth-oxycarbonyl)-10-methyltricyclo[5.3.1. $\left.0^{3,8}\right]$ undecan-9one (24). After treatment of $11(11.0 \mathrm{mg}, 0.047 \mathrm{mmol})$ with LHMDS, prepared from $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{NH}_{2}(0.02 \mathrm{~mL}, 0.09 \mathrm{mmol})\right.$ and 1.56 M BuLi /hexane ($0.04 \mathrm{~mL}, 0.06 \mathrm{mmol}$) as above, followed by addition of $\mathrm{PhCHO}(0.02 \mathrm{~mL}, 0.19 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, the mixture was stirred for 3 h at between $-78^{\circ} \mathrm{C}$ and ambient temperature. The mixture was worked up and the product was subjected to silica gel column chromatography. Elution with AcOEt /hexane ($3: 7 \mathrm{v} / \mathrm{v}$) afforded the diastereoisomeric mixture of 24 ($11.0 \mathrm{mg}, 69 \%$) as a colorless oil: IR (neat) v $3440,1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.20(\mathrm{~m}$, $5 \mathrm{H}), 5.02(\mathrm{~s}, 0.52 \mathrm{H}), 4.62(\mathrm{~s}, 0.48 \mathrm{H}), 3.68(\mathrm{~s}, 1.75 \mathrm{H}), 3.52(\mathrm{~s}$, $1.25 \mathrm{H}), 3.73(\mathrm{~s}, 0.52 \mathrm{H}), 3.70(\mathrm{~s}, 0.48 \mathrm{H}), 2.87-2.74(\mathrm{~m}, 2 \mathrm{H})$, $2.72-1.20(\mathrm{~m}, 11 \mathrm{H}), 1.00(\mathrm{~s}, 0.86 \mathrm{H}), 0.97(\mathrm{~s}, 0.96 \mathrm{H}), 0.96(\mathrm{~s}$, 1.18H); MS m/z $236\left(\mathrm{M}^{+}+\mathrm{H}-\mathrm{PhCHOH}\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} 236.1411$ ($\mathrm{M}^{+}+\mathrm{H}-\mathrm{PhCHOH}$), found 236.1407.
($1 R^{*}, 2 S^{*}, 3 S^{*}, 7 S^{*}, 8 R^{*}, 10 R^{*}$)-10-Acetyl-2-(methoxycar-bonyl)-10-methyltricyclo [5.3.1.0 ${ }^{3,8}$]undecan- 9 -one (25). A mixture of 23 ($11.0 \mathrm{mg}, 0.03 \mathrm{mmol}$), $4-\AA$ molecular sieves (30 mg), and pyridinium dichromate (PDC) ($20.8 \mathrm{mg}, 0.10 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred for 3 h at ambient temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was filtered through Florisil. Evaporation of the solvent, followed by chromatography of the product on silica gel with AcOEt/hexane ($1: 4 \mathrm{v} / \mathrm{v}$) as eluent, gave $\mathbf{2 5}(10.0 \mathrm{mg}, 91 \%$) as a colorless oil: IR (neat) $v 1720,1715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.72$ (s, 3H), 3.03 (dd, $1 \mathrm{H}, J=5.0,2.4 \mathrm{~Hz}$), $2.84-2.80$ (m, 1H), 2.51$2.48(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{ddd}, 1 \mathrm{H}$, $J=13.5,11.0,2.5 \mathrm{~Hz}), 1.65-1.40(\mathrm{~m}, 7 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}$ $m / z 278\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} 278.1518\left(\mathrm{M}^{+}\right)$, found 278.1509.
($1 R^{*}, 2 S^{*}, 3 S^{*}, 7 S^{*}, 8 R^{*}$)-10-Benzoyl-2-(methoxycarbonyl)10 -methyltricyclo [5.3.1.0 ${ }^{3,8}$] undecan- 9 -one (26). Using the same procedure described above for $25,24(3.3 \mathrm{mg}, 0.01 \mathrm{mmol})$ was converted into $\mathbf{2 6}$ ($3.1 \mathrm{mg}, 95 \%$), a colorless oil: IR (neat) $v 1720,1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.28$ $(\mathrm{m}, 5 \mathrm{H}), 3.61$ and 3.60 [each $\mathrm{s}, 3 \mathrm{H}(1: 2.4)], 2.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.59-2.29(\mathrm{~m}, 4 \mathrm{H}), 2.15(\mathrm{t}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 1.79-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.64-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 340\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} 340.1674\left(\mathrm{M}^{+}\right)$, found 340.1669 .
($1 R^{*}, 2 S^{*}, 3 S^{*}, 7 S^{*}, 8 R^{*}, 9 S^{*}, 10 R^{*}$)-10-(Hydroxymethyl)-2-(methoxycarbonyl)-10-methyltricyclo[5.3.1.0 $0^{3,8}$ undecan-$9-\mathrm{ol}$ (27). To a stirred solution of $22(43.4 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added small portions at $20^{\circ} \mathrm{C} \mathrm{NaBH} 4$ (30.0 $\mathrm{mg}, 0.79 \mathrm{mmol})$. After being stirred for 30 min at ambient temperature, followed by addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$, the mixture was thoroughly extracted with AcOEt. The extract was
washed with brine, dried, and evaporated to give a residue, which was purified by chromatography on silica gel. Elution with AcOEt/hexane ($2: 3 \mathrm{v} / \mathrm{v}$) afforded 27 ($43.4 \mathrm{mg}, 99 \%$) as a colorless oil: IR (neat) $v 3400,1710 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta 3.70$ (s, 3 H), $3.40(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=17.6,10.0 \mathrm{~Hz}$), 3.24 (br s, 1 H), $2.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.23(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.21(\mathrm{~d}$, $1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 1.92-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.35(\mathrm{~m}, 9 \mathrm{H}), 1.11$ (dt, $1 \mathrm{H}, J=13.6,3.2 \mathrm{~Hz}$), $0.94(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / z 250\left(\mathrm{M}^{+}-\right.$ $\mathrm{H}_{2} \mathrm{O}$): HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} 250.1579\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$, found 250.1552.
($1 R^{*}, 2 S^{*}, 3 S^{*}, 7 S^{*}, 8 R^{*}, 9 S^{*}, 10 R^{*}$)-9-(tert-Butyldimethyl-siloxy)-10-[(tert-butyldimethylsiloxy)methyl]-2-(meth-oxycarbonyl)-10•methyltricyclo[5.3.1. $0^{3,8}$] undecane (28). To a stirred solution of $27(40.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) were slowly added at $0{ }^{\circ} \mathrm{C} \mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.71 \mathrm{mmol}$) and tert-butyldimethylsilyl trifluoromethanesulfonate (TBDMSOTf ($0.1 \mathrm{~mL}, 0.43 \mathrm{mmol}$). After being stirred for 30 min at $0{ }^{\circ} \mathrm{C}$, followed by dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the mixture was washed with saturated NaHCO_{3} and brine, dried, and evaporated. Chromatography of the product on silica gel with AcOEt/hexane ($1: 40 \mathrm{v} / \mathrm{v}$) as eluent gave 28 ($36.0 \mathrm{mg}, 49 \%$) as a pale yellow oil: IR (neat) $v 1725 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 3.20(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.9 \mathrm{~Hz}), 3.09(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 2.88-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.28-$ $2.22(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.77-$ $1.64(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.16(\mathrm{~m}, 11 \mathrm{H}), 0.89$ and 0.88 (each s , each 9 H) $, 0.28,0.018,0.007$, and 0.001 (each s, each 3 H); MS m / z 481 ($\mathrm{M}^{+}-\mathrm{Me}$); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{49} \mathrm{O}_{4} \mathrm{Si}_{2} 481.3169$ ($\mathrm{M}^{+}-$ Me), found 481.3128.
($1 S^{*}, 2 S^{*}, 3 S^{*}, 7 R^{*}, 8 R^{*}, 9 S^{*}, 10 R^{*}$)-2-(Acetoxymethyl)-9-(tert-butyldimethylsiloxy)-10-[(tert-butyldimethylsiloxy)-methyl]-10-methyltricyclo[5.3.1.0 $\left.{ }^{3,8}\right]$ undecane (30). To a stirred solution of $28(5.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ mL) was slowly added at $-78^{\circ} \mathrm{C} 0.93 \mathrm{M}$ DIBALH/hexane (0.1 $\mathrm{mL}, 0.09 \mathrm{mmol}$), and the mixture was stirred for 1 h at -78 ${ }^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, followed by addition of $\mathrm{H}_{2} \mathrm{O}(0.1$ mL), the mixture was stirred for 30 min at ambient temperature and then filtered through Celite. Evaporation of the filtrate gave a residue, which was chromatographed on silica gel. Elution with AcOEt/hexane ($3: 17 \mathrm{v} / \mathrm{v}$) provided 29 (5.0 $\mathrm{mg}, 87 \%$) as a colorless oil: IR (neat) v $3400 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.78-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~d}, 1 \mathrm{H}, J=9.2$ Hz), $3.16(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.11(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 1.91-$ $1.18(\mathrm{~m}, 17 \mathrm{H}), 0.89$ and 0.88 (each s , each 9 H$), 0.028,0.023$, 0.011 , and 0.001 (each s, each 3 H).

A mixture of $29(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL}, 1.1$ mmol) in dry pyridine (1 mL) was stirred for 1 h at ambient temperature. After evaporation of reagents, the residue was subjected to chromatography on silica gel. Elution with $\mathrm{AcOEt} /$ hexane ($1: 50 \mathrm{v} / \mathrm{v}$) gave $30(4.0 \mathrm{mg}, 87 \%)$ as a colorless oil: IR (neat) $v 1715 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.12$ (d, $2 \mathrm{H}, J=7.9 \mathrm{~Hz}$), $3.29(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}$), $3.14(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.2 \mathrm{~Hz}), 3.10(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.83-1.18(\mathrm{~m} 2 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.89$ and 0.88 (each s, each 9 H) $, 0.028,0.024,0.017$, and 0.010 (each s , each 3 H); MS m / z $453\left(\mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{Si}_{2} 453.2856$ ($\mathrm{M}^{+}-$ ${ }^{\mathrm{t}} \mathrm{Bu}$), found 453.2838 .

Acknowledgment. We thank Dr. N. Taniguchi, Mr. K. Kawamura, Miss K. Mushiake, Miss M. Inada, Mrs. A. Satoh, and Miss Y. Maehashi, Pharmaceutical Institute, Tohoku University, for microanalysis, spectral measurements, and the preparation of the manuscript. This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (No. 05671737).

Supplementary Material Available: ${ }^{1} \mathrm{H}$ NMR spectra of compounds 2, 4, 7, 17, 21-28, and 30 (13 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, September 1, 1994.
 (1) Ihara, M.; Toyota, M.; Fukumoto, K.; Kametani, T. Tetrahedron Lett. 1984, 25, 3235-3238. Ihara, M.; Suzuki, M.; Fukumoto, K.; Kametani, T.; Kabuto, C. J. Am. Chem. Soc. 1988, 110, 1963-1964. Ihara, M.; Suzuki, M.; Fukumoto, K.; Kabuto, C. J. Am. Chem. Soc. 1990, 112, 1164-1171.
 (2) Ihara, M.; Kirihara, T.; Kawaguchi, A.; Fukumoto, K.; Kametani, T. Tetrahedron Lett. 1984, 25, 4541-4544. Ihara, M.; Takahashi, T.; Shimizu, N.; Ishida, Y.; Sudow, I.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Chem. Commun. 1987, 1467-1468. Thara, M.; Katogi, M.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Chem. Commun. 1987, 721-722.
 (3) Ihara, M.; Tsuruta, M.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Chem. Commun. 1985, 1159-1161. Ihara, M.: Takino, Y.; Fukumoto, K.; Kametani, T. Tetrahedron Lett. 1988, 29, 4135-4138. Ihara, M.; Suzuki, S.; Taniguchi, N.; Fukumoto, K.; Kabuto, C. J. Chem. Soc., Chem. Commun. 1991, 1168-1169.
 (4) Ihara, M.; Ohnishi, M.; Takano, M.; Makita, K.; Taniguchi, N.; Fukumoto, K. J. Am. Chem. Soc. 1992, 114, 4408-4410. Ihara, M.; Taniguchi, T.; Makita, K.; Takano, M.; Ohnishi, M.; Taniguchi, N.; Fukumoto, K.; Kabuto, C.'J. Am. Chem. Soc. 1993, 115, 8107-8115.
 (5) Ihara, M.; Fukumoto, K. J. Synth. Org. Chem., Jpn. 1986, 44, 96-108. Angew. Chem. Int. Ed. Engl. 1993, 32, 1010-1022.
 (6) Ihara, M.; Toyota, M.; Fukumoto, K.; Kametani, T. Tetrahedron Lett. 1984, 25, 2167 -2170. Ihara, M.; Toyota, M.; Abe, M.; Ishida, Y.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1986, 1543-1549.

[^1]: (7) Typical examples of one-pot three-step reactions via enolates or enols: Hagiwara, H.; Okano, A.; Uda, H. J. Chem. Soc., Chem. Commun. 1985, 1047. Cory, R. M.; Naguib, Y. M. A.; Rasmussen, M. H. J. Chem. Soc., Chem. Commun. 1979, 504-506. Cory, R. M.; Chan, D. M. T.; Naguib, Y. M. A.; Rastall, M. H.; Renneboog, R. M. J. Org. Chem. 1980, 45, 1852-1863. Hagiwara, H.; Kodama, T.; Kosugi, H.; Uda, H. J. Chem. Soc., Chem. Commun. 1976, 413. Hagiwara, H.; Abe, F.; Uda, H. J. Chem. Soc., Chem. Commun. 1991, 1070-1071. Spitzner, D.; Engler, A.; Liese, T.; Splettstösser, G.; de Meijere, A. Angew. Chem. Int. Ed. Engl. 1982, 21, 791. Nagaoka, H.; Baba, A.; Yamada, Y. Tetrahedron Lett. 1991, 32, 6741-6744. Danishefsky, S.; Chackalamannil, S.; Silvestri, M.; Springer, J. J. Org. Chem. 1983, 48, 36153616. Danishefsky, S.; Chackalamannil, S.; Harrison, P.; Silvestri, M.; Cole, P. J. Am. Chem. Soc. 1985, 107, 2474-2484. Posner, G. H.; Lu, S.-B.; Asirvatham, E.; Silversmith, E. F.; Shulman, E. M. J. Am. Chem. Soc. 1986, 108, 511-512. Posner, G. H.; Webb, K. S.; Asirvatham, E.; Jew, S.-S.; Degl'Innocenti, A. J. Am. Chem. Soc. 1988, 110, 4757-4762. Posner, G. H.; Shulman-Poskes, E. M. J. Org. Chem. 1989, 54, 35143515.
 (8) Stork, G.; White, W. N. J. Am. Chem. Soc. 1956, 78, 4604-4608; Lee, R. A.; McAndrews, C.; Patel, K. M.; Reusch, W. Tetrahedron Lett. 1973, 965-968.

[^2]: (9) Tokoroyama, T.; Fujimori, K.; Shimizu, T.; Yamagiwa, Y.; Monden, M.; Iio, H. Terahedron 1988, 44, 6607-6622.
 (10) Grieco, P. A.; Ferriño, S.; Oguri, T. J. Org. Chem. 1979, 44, 2539-2594.
 (11) Luche, J.-L. J. Am. Chem. Soc. 1987, 100, 2226-2227.
 (12) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 72777287.
 (13) Still, W. C.; Gennari, C. Tetrahedron. Lett. 1983, 24, 44054408.
 (14) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651-1660.

[^3]: (15) Dobler, M.; Dunitz, J. D.; Gubler, B.; Weber, H. P.; Büchi, G.; Padilla, J. Proc. Chem. Soc. 1963, 383.
 (16) Tsubaki, N.; Nishimura, K.; Hirose, Y. Bull. Chem. Soc. Jpn. 1967, 40, 597-600. Wolff, G.; Ourisson, G. Tetrahedron Lett. 1968, 3849-3852.
 (17) Heathcock, C. H. Science 1981, 214, 395-400.

